Utility of Continuous Disease Subtyping Systems for Improved Evaluation of Etiologic Heterogeneity

Molecular pathologic diagnosis is important in clinical (oncology) practice. Integration of molecular pathology into epidemiological methods (i.e., molecular pathological epidemiology) allows for investigating the distinct etiology of disease subtypes based on biomarker analyses, thereby contributing to precision medicine and prevention. However, existing approaches for investigating etiological heterogeneity deal with categorical subtypes. We aimed to fully leverage continuous measures available in most biomarker readouts (gene/protein expression levels, signaling pathway activation, immune cell counts, microbiome/microbial abundance in tumor microenvironment, etc.). We present a cause-specific Cox proportional hazards regression model for evaluating how the exposure–disease subtype association changes across continuous subtyping biomarker levels. Utilizing two longitudinal observational prospective cohort studies, we investigated how the association of alcohol intake (a risk factor) with colorectal cancer incidence differed across the continuous values of tumor epigenetic DNA methylation at long interspersed nucleotide element-1 (LINE-1). The heterogeneous alcohol effect was modeled using different functions of the LINE-1 marker to demonstrate the method’s flexibility. This real-world proof-of-principle computational application demonstrates how the new method enables visualizing the trend of the exposure effect over continuous marker levels. The utilization of continuous biomarker data without categorization for investigating etiological heterogeneity can advance our understanding of biological and pathogenic mechanisms.

Journal Cancers
Authors Ruitong Li et al
DATE 02 April 2022
A multi-modal exploration of heterogeneous physico–chemical properties of DCIS breast microcalcifications

Ductal carcinoma in situ (DCIS) is frequently associated with breast calcification. This study combines multiple analytical techniques to investigate the heterogeneity of these calcifications at the micrometre scale. X-ray diffraction, scanning electron microscopy and Raman and Fourier-transform infrared spectroscopy were used to determine the physicochemical and crystallographic properties of type II breast calcifications located in formalin fixed paraffin embedded DCIS breast tissue samples. Multiple calcium phosphate phases were identified across the calcifications, distributed in different patterns. Hydroxyapatite was the dominant mineral, with magnesium whitlockite found at the calcification edge. Amorphous calcium phosphate and octacalcium phosphate were also identified close to the calcification edge at the apparent mineral/matrix barrier. Crystallographic features of hydroxyapatite also varied across the calcifications, with higher crystallinity centrally, and highest carbonate substitution at the calcification edge. Protein was also differentially distributed across the calcification and the surrounding soft tissue, with collagen and β-pleated protein features present to differing extents. Combination of analytical techniques in this study was essential to understand the heterogeneity of breast calcifications and how this may link crystallographic and physicochemical properties of calcifications to the surrounding tissue microenvironment.

Journal Analyst
Authors Sarah Gosling et al
DATE 21 March 2022
Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA

Clustered somatic mutations are common in cancer genomes and previous analyses reveal several types of clustered single-base substitutions, which include doublet- and multi-base substitutions, diffuse hypermutation termed omikli, and longer strand-coordinated events termed kataegis. Here we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of cancer. Clustered mutations were highly enriched in driver genes and associated with differential gene expression and changes in overall survival. Several distinct mutational processes gave rise to clustered indels, including signatures that were enriched in tobacco smokers and homologous-recombination-deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, whereas most multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3 activity, accounted for a large proportion of clustered substitutions; however, only 16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple mutational processes, and 76.1% of all kataegic events exhibited mutational patterns that are associated with the activation-induced deaminase (AID) and APOBEC3 family of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA (ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kyklonic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fuelling the evolution of ecDNA.

Team Mutographs
Journal Nature
Authors Erik N. Bergstrom et al
DATE 09 February 2022
Comparative Analysis of Colon Cancer-Derived Fusobacterium nucleatum Subspecies: Inflammation and Colon Tumorigenesis in Murine…

Fusobacteria are commonly associated with human colorectal cancer (CRC), but investigations are hampered by the absence of a stably colonized murine model. Further, Fusobacterium nucleatum subspecies isolated from human CRC have not been investigated. While F. nucleatum subspecies are commonly associated with CRC, their ability to induce tumorigenesis and contributions to human CRC pathogenesis are uncertain. We sought to establish a stably colonized murine model and to understand the inflammatory potential and virulence genes of human CRC F. nucleatum, representing the 4 subspecies, animalisnucleatumpolymorphum, and vincentii. Five human CRC-derived and two non-CRC derived F. nucleatum strains were tested for colonization, tumorigenesis, and cytokine induction in specific-pathogen-free (SPF) and/or germfree (GF) wild-type and ApcMin/+ mice, as well as in vitro assays and whole-genome sequencing (WGS). SPF wild-type and ApcMin/+ mice did not achieve stable colonization with F. nucleatum, whereas certain subspecies stably colonized some GF mice but without inducing colon tumorigenesis. F. nucleatum subspecies did not form in vivo biofilms or associate with the mucosa in mice. In vivo inflammation was inconsistent across subspecies, whereas F. nucleatum induced greater cytokine responses in a human colorectal cell line, HCT116. While F. nucleatum subspecies displayed genomic variability, no distinct virulence genes associated with human CRC strains were identified that could reliably distinguish these strains from non-CRC clinical isolates. We hypothesize that the lack of F. nucleatum-induced tumorigenesis in our model reflects differences in human and murine biology and/or a synergistic role for F. nucleatum in concert with other bacteria to promote carcinogenesis.

IMPORTANCE Colon cancer is a leading cause of cancer morbidity and mortality, and it is hypothesized that dysbiosis in the gut microbiota contributes to colon tumorigenesis. Fusobacterium nucleatum, a member of the oropharyngeal microbiome, is enriched in a subset of human colon tumors. However, it is unclear whether this genetically varied species directly promotes tumor formation, modulates mucosal immune responses, or merely colonizes the tumor microenvironment. Mechanistic studies to address these questions have been stymied by the lack of an animal model that does not rely on daily orogastric gavage. Using multiple murine models, in vitro assays with a human colon cancer cell line, and whole-genome sequencing analysis, we investigated the proinflammatory and tumorigenic potential of several F. nucleatum clinical isolates. The significance of this research is development of a stable colonization model of F. nucleatum that does not require daily oral gavages in which we demonstrate that a diverse library of clinical isolates do not promote tumorigenesis.

Journal mBio
Authors Jessica Queen et al
DATE 08 February 2022
Interplay between K-RAS and noncoding RNAs

K-RAS is frequently mutated in cancers, and its overactivation can lead to oncogene-induced senescence (OIS), a barrier to cellular transformation. Feedback onto K-RAS limits its signaling to avoid senescence while achieving the appropriate level of activation that promotes proliferation and survival. Such regulation could be mediated by miRNAs, as aberrant RAS signaling and miRNA activity coexist in several cancers, with miRNAs acting both up- and downstream of K-RAS. Several miRNAs both regulate and are regulated by K-RAS, suggesting a noncoding RNA-based feedback mechanism. Functional interactions between K-RAS and the miRNA machinery have also begun to unfold. This review comprehensively surveys the state of knowledge connecting K-RAS to miRNA function and proposes a model for the regulation of K-RAS signaling by noncoding RNAs.

Journal Trends in Cancer
Authors Bing Shui et al
DATE 26 January 2022