Publications

Team
Choose
Year
Choose
Tags
Choose
Intestinal organoid cocultures with microbes

Adult-stem-cell-derived organoids model human epithelial tissues ex vivo, which enables the study of host–microbe interactions with great experimental control. This protocol comprises methods to coculture organoids with microbes, particularly focusing on human small intestinal and colon organoids exposed to individual bacterial species. Microinjection into the lumen and periphery of 3D organoids is discussed, as well as exposure of organoids to microbes in a 2D layer. We provide detailed protocols for characterizing the coculture with regard to bacterial and organoid cell viability and growth kinetics. Spatial relationships can be studied by fluorescence live microscopy, as well as scanning electron microscopy. Finally, we discuss considerations for assessing the impact of bacteria on gene expression and mutations through RNA and DNA sequencing. This protocol requires equipment for standard mammalian tissue culture, or bacterial or viral culture, as well as a microinjection device.

Team OPTIMISTICC
Journal Nature Protocols
Authors Jens Puschhof et al
DATE 11 August 2021
Bacterial-Driven Inflammation and Mutant BRAF Expression Combine to Promote Murine Colon Tumorigenesis That Is Sensitive to…

Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAFV600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAFV600ELgr5CreMin (BLM) mice, tumors have similarities to human BRAFV600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti–PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy.

 

Significance: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene–microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAFV600ELgr5CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.

Team OPTIMISTICC
Journal Cancer Discovery
Authors Christina E. DeStefano Shields et al
DATE 01 July 2021
Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling

Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe–microbe and host–microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.

Team OPTIMISTICC
Journal Annual Review of Biomedical Data Science
Authors Yancong Zhang et al
DATE 01 July 2021
Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis

Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared with organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefitted the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.

Team Mutographs
Journal Mutagenesis
Authors Angela L Caipa Garcia et al
DATE 19 June 2021
Organoids and organs-on-chips: Insights into human gut-microbe interactions

The important and diverse roles of the gut microbiota in human health and disease are increasingly recognized. The difficulty of inferring causation from metagenomic microbiome sequencing studies and from mouse-human interspecies differences has prompted the development of sophisticated in vitro models of human gut-microbe interactions. Here, we review recent advances in the co-culture of microbes with intestinal and colonic epithelia, comparing the rapidly developing fields of organoids and organs-on-chips with other standard models. We describe how specific individual processes by which microbes and epithelia interact can be recapitulated in vitro. Using examples of bacterial, viral, and parasitic infections, we highlight the advantages of each culture model and discuss current trends and future possibilities to build more complex co-cultures.

Team OPTIMISTICC
Journal Cell Host & Microbe
Authors Jens Puschhof et al
DATE 09 June 2021