The Mutographs biorepository: A unique genomic resource to study cancer around the world

Large-scale biorepositories and databases are essential to generate equitable, effective, and sustainable advances in cancer prevention, early detection, cancer therapy, cancer care, and surveillance. The Mutographs project has created a large genomic dataset and biorepository of over 7,800 cancer cases from 30 countries across five continents with extensive demographic, lifestyle, environmental, and clinical information. Whole-genome sequencing is being finalized for over 4,000 cases, with the primary goal of understanding the causes of cancer at eight anatomic sites. Genomic, exposure, and clinical data will be publicly available through the International Cancer Genome Consortium Accelerating Research in Genomic Oncology platform. The Mutographs sample and metadata biorepository constitutes a legacy resource for new projects and collaborations aiming to increase our current research efforts in cancer genomic epidemiology globally.

Team Mutographs
Journal Cell Genomics
Authors Sandra Perdomo et al
DATE 06 February 2024
Enrichment of Bacteroides fragilis and enterotoxigenic Bacteroides fragilis in CpG island methylator phenotype (CIMP)-high…


Data support that enterotoxigenic Bacteroides fragilis (ETBF) harbouring the Bacteroides fragilis toxin (bft) gene may promote colorectal tumourigenesis through the serrated neoplasia pathway. We hypothesised that ETBF may be enriched in colorectal carcinoma subtypes with high-level CpG island methylator phenotype (CIMP-high), BRAF mutation, and high-level microsatellite instability (MSI-high).



Quantitative polymerase chain reaction assays were designed to quantify DNA amounts of Bacteroides fragilis, ETBF, and each bft gene isotype (bft-1, bft-2, or bft-3) in colorectal carcinomas in the Health Professionals Follow-up Study and Nurses’ Health Study. We used multivariable-adjusted logistic regression models with the inverse probability weighting method.



We documented 4,476 colorectal cancer cases, including 1,232 cases with available bacterial data. High DNA amounts of Bacteroides fragilis and ETBF were positively associated with BRAF mutation (P ≤0.0003), CIMP-high (P ≤0.0002), and MSI-high (P <0.0001 and P =0.01, respectively). Multivariable-adjusted odds ratios (ORs, with 95% confidence interval) for high Bacteroides fragilis were 1.40 (1.06-1.85) for CIMP-high and 2.14 (1.65-2.77) for MSI-high, but 1.02 (0.78-1.35) for BRAF mutation. Multivariable-adjusted ORs for high ETBF were 2.00 (1.16-3.45) for CIMP-high and 2.86 (1.64-5.00) for BRAF mutation, but 1.09 (0.67-1.76) for MSI-high. Neither Bacteroides fragilis nor ETBF was associated with colorectal cancer-specific or overall survival.



The tissue abundance of Bacteroides fragilis is associated with CIMP-high and MSI-high, whereas ETBF abundance is associated with CIMP-high and BRAF mutation in colorectal carcinoma. Our findings support the aetiological relevance of Bacteroides fragilis and ETBF in the serrated neoplasia pathway.

Journal Clinical Microbiology and Infection
Authors Yasutoshi Takashima et al
DATE 22 January 2024
Passenger gene co-amplifications create collateral therapeutic vulnerabilities in cancer

DNA amplifications in cancer do not only harbor oncogenes. We sought to determine whether passenger co-amplifications could create collateral therapeutic vulnerabilities. Through an analysis of >3,000 cancer genomes followed by the interrogation of CRISPR-Cas9 loss-of-function screens across >700 cancer cell lines, we determined that passenger co-amplifications are accompanied by distinct dependency profiles. In a proof-of-principle study, we demonstrate that co-amplification of the bona fide passenger gene DEAD-Box Helicase 1 (DDX1) creates an increased dependency to the mTOR pathway. Interaction proteomics identified tricarboxylic acid (TCA) cycle components as previously unrecognized DDX1 interaction partners. Live-cell metabolomics highlighted that this interaction could impair TCA activity, which in turn resulted in enhanced mTORC1 activity. Consequently, genetic and pharmacologic disruption of mTORC1 resulted in pronounced cell death in vitro and in vivo. Thus, structurally linked co-amplification of a passenger gene and an oncogene can result in collateral vulnerabilities.

Team eDyNAmiC
Journal Cancer Discovery
Authors Yi Bei et al
DATE 10 January 2024
KRAS allelic imbalance drives tumour initiation yet suppresses metastasis in colorectal cancer in vivo

Oncogenic KRAS mutations are well-described functionally and are known to drive tumorigenesis. Recent reports describe a significant prevalence of KRAS allelic imbalances or gene dosage changes in human cancers, including loss of the wild-type allele in KRAS mutant cancers. However, the role of wild-type KRAS in tumorigenesis and therapeutic response remains elusive. We report an in vivo murine model of colorectal cancer featuring deletion of wild-type Kras in the context of oncogenic Kras. Deletion of wild-type Kras exacerbates oncogenic KRAS signalling through MAPK and thus drives tumour initiation. Absence of wild-type Kras potentiates the oncogenic effect of KRASG12D, while incidentally inducing sensitivity to inhibition of MEK1/2. Importantly, loss of the wild-type allele in aggressive models of KRASG12D-driven CRC significantly alters tumour progression, and suppresses metastasis through modulation of the immune microenvironment. This study highlights the critical role for wild-type Kras upon tumour initiation, progression and therapeutic response in Kras mutant CRC.

Journal Nature Communications
Authors Arafath K. Najumudeen et al
DATE 02 January 2024
Hotspot propensity across mutational processes

The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5–78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94–95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80–100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.

Journal Molecular Systems Biology
Authors Claudia Arnedo-Pac et al
DATE 02 January 2024