Publications

Team
Choose
Year
Choose
Tags
Choose
Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer

Background: Accumulating evidence has identified Fusobacterium as an important pathogenic gut bacterium associated with colorectal cancer. Nevertheless, only limited data exist about the role of this bacterium in locally advanced rectal cancer (LARC). In this study, we quantified Fusobacterium nucleatum in untreated and post-neoadjuvant chemoradiotherapy (nCRT) samples from LARC patients and investigated its association with therapy response and survival.

Patients and methods: A total of 254 samples from 143 patients with rectal adenocarcinomas were analyzed for the presence and abundance of F. nucleatum using RNA in situ hybridization and digital image analysis. Assay accuracy was determined using infected cell lines and tumor samples with available quantitative PCR data. We studied the impact of F. nucleatum load on pathologic complete response and relapse-free survival. Treatment-induced changes were evaluated in paired pre- and post-nCRT samples (n = 71). Finally, tumor microenvironment changes during nCRT were assessed in paired samples (n = 45) by immune contexture analysis.

Results: F. nucleatum tissue levels by RNA in situ hybridization strongly correlated with quantitative PCR (r = 0.804, P < 0.001). F. nucleatum abundance was higher in untreated [median, 7.4; 95% confidence interval (3.7–16.2)] compared with treated [median, 1.6; 95% confidence interval (1.3–2.4)] tumors (P <0.001) with 58% (73/126) and 26% (22/85) positive tumors, respectively (P < 0.001). Baseline F. nucleatum levels were not associated with pathologic complete response. F. nucleatum positivity after nCRT, but not baseline status, significantly increased risk of relapse [hazard ratio = 7.5, 95% confidence interval (3.0–19.0); P < 0.001]. Tumors that turned F. nucleatum-negative after nCRT had a strong increase in CD8+ T cells post-nCRT (P < 0.001), while those that persisted F. nucleatum-positive after nCRT lacked CD8+ T cells induction in post-nCRT samples compared with baseline (P = 0.69).

Conclusion: F. nucleatum persistence post-nCRT is associated with high relapse rates in LARC, potentially linked to suppression of immune cytotoxicity.

Team OPTIMISTICC
Journal Annals of Oncology
Authors G. Serna et al
DATE 19 June 2020
Metabolic fingerprinting links oncogenic PIK3CA with enhanced arachidonic acid-derived eicosanoids

Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCz-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction.

Team Rosetta
Journal Cell
Authors Nikos Koundouros et al
DATE 18 June 2020
Universal sample preparation unlocking multimodal molecular tissue imaging

A new tissue sample embedding and processing method is presented that provides downstream compatibility with numerous different histological, molecular biology, and analytical techniques. The methodology is based on the low temperature embedding of fresh frozen specimens into a hydrogel matrix composed of hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) and sectioning using a cryomicrotome. The hydrogel was expected not to interfere with standard tissue characterization methods, histologically or analytically. We assessed the compatibility of this protocol with various mass spectrometric imaging methods including matrix-assisted laser desorption ionization (MALDI), desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS). We also demonstrated the suitability of the universal protocol for extraction based molecular biology techniques such as rt-PCR. The integration of multiple analytical modalities through this universal sample preparation protocol offers the ability to study tissues at a systems biology level and directly linking results to tissue morphology and cellular phenotype.

Team Rosetta
Journal Analytical Chemistry
Authors Andreas Dannhorn et al
DATE 10 June 2020
Trop2 is upregulated in the transition to dysplasia in the metaplastic gastric mucosa

Intestinal type gastric adenocarcinoma arises in a field of pre‐existing metaplasia. While biomarkers of cancer and metaplasia have been identified, the definition of dysplastic transition as a critical point in the evolution of cancer has remained obscure. We have evaluated Trop2 as a putative marker of the transition from metaplasia to dysplasia in the stomach in multiple mouse models of metaplasia induction and progression. In addition,TROP2 expression was evaluated in human samples by immunostaining tissue microarrays for metaplasia, dysplasia and gastric cancer. Dysplastic mouse organoids were evaluated in vitro following shRNA knockdown of Trop2 expression. In mouse models, no Trop2 was observed in the normal corpus and Trop2 was not induced in acute models of metaplasia induction with either L635 or DMP‐777. In Mist1‐Kras mice, Trop2 expression was not observed in metaplasia at one month after Kras induction, but was observed in dysplastic glands at 3–4 months after Kras induction. In human tissues, no Trop2 was observed in normal corpus mucosa or SPEM, but Trop2 expression was observed in incomplete intestinal metaplasia, with significantly less expression in complete intestinal metaplasia. Trop2 expression was observed in all dysplastic and 84% of gastric cancer lesions, although expression levels were variable. Dysplastic mouse organoids from Mist1‐Kras mice expressed Trop2 strongly. Knockdown of Trop2 with shRNA markedly reduced organoid growth and budding behavior and induced the upregulation of apical villin expression. We conclude that Trop2 is upregulated in the transition to dysplasia in the stomach and promotes dysplastic cell behaviors.

Team STORMing Cancer
Journal Journal of Pathology
Authors Katherine M. Riera et al
DATE 20 May 2020
Structure of the mucosal and stool microbiome in Lynch syndrome

The gut microbiota has been associated with colorectal cancer (CRC), but causal alterations preceding CRC have not been elucidated. To prospectively assess microbiome changes prior to colorectal neoplasia, we investigated samples from 100 Lynch syndrome patients using 16S rRNA gene sequencing of colon biopsies, coupled with metagenomic and metatranscriptomic sequencing of feces. Colectomy and CRC history represented the largest effects on microbiome profiles. A subset of Clostridiaceae were depleted in stool corresponding with baseline adenomas, while Desulfovibrio was enriched both in stool and in mucosal biopsies. A classifier leveraging stool metatranscriptomes resulted in modest power to predict interval development of preneoplastic colonic adenoma. Predictive transcripts corresponded with a shift in flagellin contributors and oxidative metabolic microenvironment, potentially factors in local CRC pathogenesis. This suggests that the effectiveness of prospective microbiome monitoring for adenomas may be limited but supports the potential causality of these consistent, early microbial changes in colonic neoplasia.

Team OPTIMISTICC
Journal Cell Host and Microbe
Authors Yan Yan et al
DATE 08 April 2020