Tobacco smoking and somatic mutations in human bronchial epithelium

Tobacco smoking causes lung cancer, a process that is driven by more than 60 carcinogens in cigarette smoke that directly damage and mutate DNA. The profound effects of tobacco on the genome of lung cancer cells are well-documented, but equivalent data for normal bronchial cells are lacking. Here we sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking was the major influence on mutational burden, typically adding from 1,000 to 10,000 mutations per cell; massively increasing the variance both within and between subjects; and generating several distinct mutational signatures of substitutions and of insertions and deletions. A population of cells in individuals with a history of smoking had mutational burdens that were equivalent to those expected for people who had never smoked: these cells had less damage from tobacco-specific mutational processes, were fourfold more frequent in ex-smokers than current smokers and had considerably longer telomeres than their more-mutated counterparts. Driver mutations increased in frequency with age, affecting 4–14% of cells in middle-aged subjects who had never smoked. In current smokers, at least 25% of cells carried driver mutations and 0–6% of cells had two or even three drivers. Thus, tobacco smoking increases mutational burden, cell-to-cell heterogeneity and driver mutations, but quitting promotes replenishment of the bronchial epithelium from mitotically quiescent cells that have avoided tobacco mutagenesis.

Team Mutographs
Journal Nature
Authors Kenichi Yoshida et al
DATE January 2020
Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer

Fusobacterium nucleatum (F. nucleatum), which has been associated with colorectal carcinogenesis, can impair anti-tumour immunity, and actively invade colon epithelial cells. Considering the critical role of autophagy in host defence against microorganisms, we hypothesised that autophagic activity of tumour cells might influence the amount of F. nucleatum in colorectal cancer tissue. Using 724 rectal and colon cancer cases within the Nurses' Health Study and the Health Professionals Follow-up Study, we evaluated autophagic activity of tumour cells by immunohistochemical analyses of BECN1 (beclin 1), MAP1LC3 (LC3), and SQSTM1 (p62) expression. We measured the amount of F. nucleatum DNA in tumour tissue by quantitative polymerase chain reaction (PCR). We conducted multivariable ordinal logistic regression analyses to examine the association of tumour BECN1, MAP1LC3, and SQSTM1 expression with the amount of F. nucleatum, adjusting for potential confounders, including microsatellite instability status; CpG island methylator phenotype; long-interspersed nucleotide element-1 methylation; and KRAS, BRAF, and PIK3CA mutations. Compared with BECN1-low cases, BECN1-intermediate and BECN1-high cases were associated with lower amounts of F. nucleatum with odds ratios (for a unit increase in three ordinal categories of the amount of F. nucleatum) of 0.54 (95% confidence interval, 0.29-0.99) and 0.31 (95% confidence interval, 0.16-0.60), respectively (Ptrend < 0.001 across ordinal BECN1 categories). Tumour MAP1LC3 and SQSTM1 levels were not significantly associated with the amount of F. nucleatum (Ptrend > 0.06). Tumour BECN1, MAP1LC3, and SQSTM1 levels were not significantly associated with patient survival (Ptrend > 0.10). In conclusion, tumour BECN1 expression is inversely associated with the amount of F. nucleatum in colorectal cancer tissue, suggesting a possible role of autophagy in the elimination of invasive microorganisms

Journal The Journal of Pathology
Authors Koichiro Haruki et al
DATE 27 December 2019
Calcification microstructure reflects breast tissue microenvironment

Microcalcifications are important diagnostic indicators of disease in breast tissue. Tissue microenvironments differ in many aspects between normal and cancerous cells, notably extracellular pH and glycolytic respiration. Hydroxyapatite microcalcification microstructure is also found to differ between tissue pathologies, including differential ion substitutions and the presence of additional crystallographic phases. Distinguishing between tissue pathologies at an early stage is essential to improve patient experience and diagnostic accuracy, leading to better disease outcome. This study explores the hypothesis that microenvironment features may become immortalised within calcification crystallite characteristics thus becoming indicators of tissue pathology. In total, 55 breast calcifications incorporating 3 tissue pathologies (benign – B2, ductal carcinoma in-situ - B5a and invasive malignancy - B5b) from archive formalin-fixed paraffin-embedded core needle breast biopsies were analysed using X-ray diffraction. Crystallite size and strain were determined from 548 diffractograms using Williamson-Hall analysis. There was an increased crystallinity of hydroxyapatite with tissue malignancy compared to benign tissue. Coherence length was significantly correlated with pathology grade in all basis crystallographic directions (P < 0.01), with a greater difference between benign and in situ disease compared to in-situ disease and invasive malignancy. Crystallite size and non-uniform strain contributed to peak broadening in all three pathologies. Furthermore, crystallite size and non-uniform strain normal to the basal planes increased significantly with malignancy (P < 0.05). Our findings support the view that tissue microenvironments can influence differing formation mechanisms of hydroxyapatite through acidic precursors, leading to differential substitution of carbonate into the hydroxide and phosphate sites, causing significant changes in crystallite size and non-uniform strain.

Journal Journal of Mammary Gland Biology and Neoplasia
Authors Sarah Gosling et al
DATE 05 December 2019
Mevalonate pathway provides ubiquinone to maintain pyrimidine synthesis and survival in p53-deficient cancer cells exposed to…

Oncogene activation and loss of tumor suppressor function changes the metabolic activity of cancer cells to drive unrestricted proliferation. Moreover, cancer cells adapt their metabolism to sustain growth and survival when access to oxygen and nutrients is restricted, such as in poorly vascularized tumor areas. We show here that p53-deficient colon cancer cells exposed to tumor-like metabolic stress in spheroid culture activated the mevalonate pathway to promote the synthesis of ubiquinone. This was essential to maintain mitochondrial electron transport for respiration and pyrimidine synthesis in metabolically compromised environments. Induction of mevalonate pathway enzyme expression in the absence of p53 was mediated by accumulation and stabilization of mature SREBP2. Mevalonate pathway inhibition by statins blocked pyrimidine nucleotide biosynthesis and induced oxidative stress and apoptosis in p53-deficient cancer cells in spheroid culture. Moreover, ubiquinone produced by the mevalonate pathway was essential for the growth of p53-deficient tumor organoids. In contrast, inhibition of intestinal hyperproliferation by statins in an Apc/KrasG12D-mutant mouse model was independent of de novo pyrimidine synthesis. Our results highlight the importance of the mevalonate pathway for maintaining mitochondrial electron transfer and biosynthetic activity in cancer cells exposed to metabolic stress. They also demonstrate that the metabolic output of this pathway depends on both genetic and environmental context.

Significance: These findings suggest that p53-deficient cancer cells activate the mevalonate pathway via SREBP2 and promote the synthesis of ubiquinone that plays an essential role in reducing oxidative stress and supports the synthesis of pyrimidine nucleotide

Team Rosetta
Journal Cancer Research
Authors Irem Kaymak et al
DATE 19 November 2019
Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-…

Background: Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying complex biological systems, such as tumor heterogeneity and tissue microenvironments. However, the sources of technical and biological variation in primary solid tumor tissues and patient-derived mouse xenografts for scRNA-seq are not well understood.

Results: We use low temperature (6 °C) protease and collagenase (37 °C) to identify the transcriptional signatures associated with tissue dissociation across a diverse scRNA-seq dataset comprising 155,165 cells from patient cancer tissues, patient-derived breast cancer xenografts, and cancer cell lines. We observe substantial variation in standard quality control metrics of cell viability across conditions and tissues. From the contrast between tissue protease dissociation at 37 °C or 6 °C, we observe that collagenase digestion results in a stress response. We derive a core gene set of 512 heat shock and stress response genes, including FOS and JUN, induced by collagenase (37 °C), which are minimized by dissociation with a cold active protease (6 °C). While induction of these genes was highly conserved across all cell types, cell type-specific responses to collagenase digestion were observed in patient tissues.

Conclusions: The method and conditions of tumor dissociation influence cell yield and transcriptome state and are both tissue- and cell-type dependent. Interpretation of stress pathway expression differences in cancer single-cell studies, including components of surface immune recognition such as MHC class I, may be especially confounded. We define a core set of 512 genes that can assist with the identification of such effects in dissociated scRNA-seq experiments.

Journal Genome Biology
Authors Ciara H. O’Flanagan et al
DATE 17 November 2019