Publications

Teams
Tags
Year
Comprehensive multiplexed immune profiling of the ductal carcinoma in situ immune microenvironment regarding subsequent…

Ductal carcinoma in situ (DCIS) is treated to prevent subsequent ipsilateral invasive breast cancer (iIBC). However, many DCIS lesions will never become invasive. To prevent overtreatment, we need to distinguish harmless from potentially hazardous DCIS. We investigated whether the immune microenvironment (IME) in DCIS correlates with transition to iIBC.

Team PRECISION
Journal British Journal of Cancer
Authors Mathilde Almekinders et al
DATE 29 June 2022
Western-style Diet, pks Island-Carrying Escherichia coli, and Colorectal Cancer: Analyses from Two Large Prospective Cohort…

Evidence supports a carcinogenic role of Escherichia coli carrying the polyketide synthase (pks) island that encodes enzymes for colibactin biosynthesis. We hypothesized that the association of western-style diet (rich in red and processed meat) with colorectal cancer incidence might be stronger for tumors containing higher amounts of pksE. coli.

Team OPTIMISTICC
Journal Gastroenterology
Authors Kota Arima et al
DATE 24 June 2022
Signatures of copy number alterations in human cancer

Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage–fusion–bridge cycles, among others, which may lead to chromosomal instability and aneuploidy. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlasrevealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2. In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations.

Team Mutographs
Journal Nature
Authors Christopher D. Steele et al
DATE 15 June 2022
Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer

Ductal carcinoma in situ (DCIS) is the most common form of preinvasive breast cancer and, despite treatment, a small fraction (5–10%) of DCIS patients develop subsequent invasive disease. A fundamental biologic question is whether the invasive disease arises from tumor cells in the initial DCIS or represents new unrelated disease. To address this question, we performed genomic analyses on the initial DCIS lesion and paired invasive recurrent tumors in 95 patients together with single-cell DNA sequencing in a subset of cases. Our data show that in 75% of cases the invasive recurrence was clonally related to the initial DCIS, suggesting that tumor cells were not eliminated during the initial treatment. Surprisingly, however, 18% were clonally unrelated to the DCIS, representing new independent lineages and 7% of cases were ambiguous. This knowledge is essential for accurate risk evaluation of DCIS, treatment de-escalation strategies and the identification of predictive biomarkers.

Team PRECISION
Journal Nature Genetics
Authors Esther H. Lips et al
DATE 09 June 2022
Utility of Continuous Disease Subtyping Systems for Improved Evaluation of Etiologic Heterogeneity

Molecular pathologic diagnosis is important in clinical (oncology) practice. Integration of molecular pathology into epidemiological methods (i.e., molecular pathological epidemiology) allows for investigating the distinct etiology of disease subtypes based on biomarker analyses, thereby contributing to precision medicine and prevention. However, existing approaches for investigating etiological heterogeneity deal with categorical subtypes. We aimed to fully leverage continuous measures available in most biomarker readouts (gene/protein expression levels, signaling pathway activation, immune cell counts, microbiome/microbial abundance in tumor microenvironment, etc.). We present a cause-specific Cox proportional hazards regression model for evaluating how the exposure–disease subtype association changes across continuous subtyping biomarker levels. Utilizing two longitudinal observational prospective cohort studies, we investigated how the association of alcohol intake (a risk factor) with colorectal cancer incidence differed across the continuous values of tumor epigenetic DNA methylation at long interspersed nucleotide element-1 (LINE-1). The heterogeneous alcohol effect was modeled using different functions of the LINE-1 marker to demonstrate the method’s flexibility. This real-world proof-of-principle computational application demonstrates how the new method enables visualizing the trend of the exposure effect over continuous marker levels. The utilization of continuous biomarker data without categorization for investigating etiological heterogeneity can advance our understanding of biological and pathogenic mechanisms.

Team OPTIMISTICC
Journal Cancers
Authors Ruitong Li et al
DATE 02 April 2022