Publications

Teams
Tags
Year
Distinct extracellular–matrix remodeling events precede symptoms of inflammation

Identification of early processes leading to complex tissue pathologies, such as inflammatory bowel diseases, ‎poses a major scientific and clinical challenge that is imperative for improved diagnosis and treatment. Most studies of inflammation onset focus on cellular processes and signaling molecules, while overlooking the environment in which they take place, the continuously remodeled extracellular matrix. In this study, we used colitis models for investigating extracellular–matrix dynamics during disease onset, while treating the matrix as a complete and defined entity. Through the analysis of matrix structure, stiffness and composition, we unexpectedly revealed that even prior to the first clinical symptoms, the colon displays its own unique extracellular–matrix signature and found specific markers of clinical potential, which were also validated in human subjects. We also show that the emergence of this pre-symptomatic matrix is mediated by subclinical infiltration of immune cells bearing remodeling enzymes. Remarkably, whether the inflammation is chronic or acute, its matrix signature converges at pre-symptomatic states. We suggest that the existence of a pre-symptomatic extracellular–matrix is general and relevant to a wide range of diseases.

Team STORMing Cancer
Journal Matrix Biology
Authors Elee Shimshoni et al
DATE 25 November 2020
Mutagenicity of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N–OH-PhIP) in human TP53 knock-in (Hupki) mouse embryo…

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a possible human carcinogen formed in cooked fish and meat. PhIP is bioactivated by cytochrome P450 enzymes to form 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N–OH-PhIP), a genotoxic metabolite that reacts with DNA leading to the mutation-prone DNA adduct N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP). Here, we studied N–OH-PhIP-induced whole genome mutagenesis in human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalised and subjected to whole genome sequencing (WGS). In addition, mutagenicity of N–OH-PhIP in TP53 and the lacZ reporter gene were assessed. TP53 mutant frequency in HUF cultures treated with N–OH-PhIP (2.5 μM for 24 h, n = 90) was 10% while no TP53 mutations were found in untreated controls (DMSO for 24 h, n = 6). All N–OH-PhIP-induced TP53 mutations occurred at G:C base pairs with G > T/C > A transversions accounting for 58% of them. TP53 mutations characteristic of those induced by N–OH-PhIP have been found in human tumours including breast and colorectal, which are cancer types that have been associated with PhIP exposure. LacZ mutant frequency increased 25-fold at 5 μM N–OH–PHIP and up to ~350 dG-C8-PhIP adducts/108 nucleosides were detected by ultra-performance liquid chromatography-electrospray ionisation multistage scan mass spectrometry (UPLC-ESI-MS3) at this concentration. In addition, a WGS mutational signature defined by G > T/C > A transversions was present in N–OH-PhIP-treated immortalised clones, which showed similarity to COSMIC SBS4, 18 and 29 signatures found in human tumours.

Team Mutographs
Journal Food and Chemical Toxicology
Authors Lisa Hölzl-Armstrong et al
DATE 12 November 2020
Comparison of 13 C MRI of hyperpolarized [1-13 C]pyruvate and lactate with the corresponding mass spectrometry images in a…

PURPOSE: To compare carbon-13 (13 C) MRSI of hyperpolarized [1-13 C]pyruvate metabolism in a murine tumor model with mass spectrometric (MS) imaging of the corresponding tumor sections in order to cross validate these metabolic imaging techniques and to investigate the effects of pyruvate delivery and tumor lactate concentration on lactate labeling.

METHODS: [1-13 C]lactate images were obtained from tumor-bearing mice, following injection of hyperpolarized [1-13 C]pyruvate, using a single-shot 3D 13 C spectroscopic imaging sequence in vivo and using desorption electrospray ionization MS imaging of the corresponding rapidly frozen tumor sections ex vivo. The images were coregistered, and levels of association were determined by means of Spearman rank correlation and Cohen kappa coefficients as well as linear mixed models. The correlation between [1-13 C]pyruvate and [1-13 C]lactate in the MRS images and between [12 C] and [1-13 C]lactate in the MS images were determined by means of Pearson correlation coefficients.

RESULTS: [1-13 C]lactate images generated by MS imaging were significantly correlated with the corresponding MRS images. The correlation coefficient between [1-13 C]lactate and [1-13 C]pyruvate in the MRS images was higher than between [1-13 C]lactate and [12 C]lactate in the MS images.

CONCLUSION: The inhomogeneous distribution of labeled lactate observed in the MRS images was confirmed by MS imaging of the corresponding tumor sections. The images acquired using both techniques show that the rate of 13 C label exchange between the injected pyruvate and endogenous tumor lactate pool is more correlated with the rate of pyruvate delivery to the tumor cells and is less affected by the endogenous lactate concentration.

Team Rosetta
Journal Magnetic Resource in Medicine
Authors Maria Fala et al
DATE 06 November 2020
Contralateral breast cancer risk in patients with ductal carcinoma in situ and invasive breast cancer

We aimed to assess contralateral breast cancer (CBC) risk in patients with ductal carcinoma in situ (DCIS) compared with invasive breast cancer (BC). Women diagnosed with DCIS (N = 28,003) or stage I–III BC (N = 275,836) between 1989 and 2017 were identified from the nationwide Netherlands Cancer Registry. Cumulative incidences were estimated, accounting for competing risks, and hazard ratios (HRs) for metachronous invasive CBC. To evaluate effects of adjuvant systemic therapy and screening, separate analyses were performed for stage I BC without adjuvant systemic therapy and by mode of first BC detection. Multivariable models including clinico-pathological and treatment data were created to assess CBC risk prediction performance in DCIS patients. The 10-year cumulative incidence of invasive CBC was 4.8% for DCIS patients (CBC = 1334). Invasive CBC risk was higher in DCIS patients compared with invasive BC overall (HR = 1.10, 95% confidence interval (CI) = 1.04–1.17), and lower compared with stage I BC without adjuvant systemic therapy (HR = 0.87; 95% CI = 0.82–0.92). In patients diagnosed ≥2011, the HR for invasive CBC was 1.38 (95% CI = 1.35–1.68) after screen-detected DCIS compared with screen-detected invasive BC, and was 2.14 (95% CI = 1.46–3.13) when not screen-detected. The C-index was 0.52 (95% CI = 0.50–0.54) for invasive CBC prediction in DCIS patients. In conclusion, CBC risks are low overall. DCIS patients had a slightly higher risk of invasive CBC compared with invasive BC, likely explained by the risk-reducing effect of (neo)adjuvant systemic therapy among BC patients. For support of clinical decision making more information is needed to differentiate CBC risks among DCIS patients.

Team PRECISION
Journal npj Breast Cancer
Authors Daniele Giardiello et al
DATE 03 November 2020
The critical roles of somatic mutations and environmental tumor-promoting agents in cancer risk

Cancer is driven by genomic mutations in ‘cancer driver’ genes, which have essential roles in tumor development. These mutations may be caused by exposure to mutagens in the environment or by endogenous DNA-replication errors in tissue stem cells. Recent observations of abundant mutations, including cancer driver mutations, in histologically normal human tissues suggest that mutations alone are not sufficient for tumor development, thus prompting the question of how single mutant cells give rise to neoplasia. In a concept supported by decades-old data from mouse tumor models, non-mutagenic tumor-promoting agents have been posited to activate the proliferation of dormant mutated cells, thus generating actively growing lesions, with the promotion stage as the rate-limiting step in tumor formation. Non-mutagenic promoting agents, either endogenous or environmental, may therefore have a more important role in human cancer etiology than previously thought.

Team Mutographs
Journal Nature Genetics
Authors Allan Balmain
DATE 26 October 2020